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Statistical Example: One-Factor Analysis Model
h

1 2 3 4 5

X ∼ Nk(0, Σ)

Parametrization

Σ = Ω + ΓΓ⊤,

where Ω > 0 diagonal and Γ ∈ Rk×1.

Characterization by Constraints
Equality constraints (tetrads):

σuvσwz − σuwσvz = 0.

Inequality constraints:

−σuvσvwσuw ≤ 0, σ2
uvσ2

vw − σ2
vvσ2

uw ≤ 0.

Topic of the talk: Testing the goodness-of-fit based on samples X1, . . . , Xn ∼ Nk(0, Σ).
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Further Examples
• Gaussian Latent Tree Models

Characterized by vanishing of certain tetrads and inequality constraints on the
covariance matrix. (Long paths −→ small correlations)
Shiers, Zwiernik, Aston, Smith (2016).
The correlation space of Gaussian latent tree models and model selection without fitting. Biometrika, 103(3):531–545.

• Linear Non-Gaussian Structural Equation Models

X = Λ⊤X + ε

Denote S = (sij) and T = (tijl) the second and third order moments of X .

rk


s11 s12 · · · s1k s22 s23 · · · skk
t111 t112 · · · t11k t122 t123 · · · t1kk

...
... . . . ...

...
... . . . ...

t11k t12k · · · t1kk t22k t23k · · · tkkk

 = k

t111t222t333t123 − (t222t333t112t113 + t333t111t122t223+
t111t222t333t233) − t123(t111t223t233 + t222t133t113+
t333t112t122) + . . . = 0 (Aronhold invariant)

Master Thesis Daniela Schkoda (2022).
Goodness-of-fit tests for non-Gaussian linear causal models.

• . . .
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General Setup: Testing Constraints on Statistical Models

Parametric family:

P = {Pθ : θ ∈ Θ}, where Θ ∈ Rd .

Model:
Θ0 = {θ ∈ Θ : fj(θ) ≤ 0 for all 1 ≤ j ≤ p}.

Our main interest: Polynomial constraints fj .

Based on samples X1, . . . , Xn ∼ Pθ test

H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ \ Θ0.
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Likelihood-Ratio Test

λn = −2 log
supθ∈Θ0 Ln(θ)

supθ∈Θ Ln(θ)

 .

Simulated p-values (one-factor analysis model, Bartlett correction):

k = 15 observed variables,
Σ regular point.

k = 15 observed variables,
Σ close to a singular point.

k = 200 observed variables,
Σ regular point.
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Wald Test
Tetrad: f1(Σ) = σ13σ24 − σ23σ14.

Wn = f1(Σ̂)2

v̂ar[f1(Σ̂)]
= n f1(Σ̂)2

(∇f1(Σ̂))⊤V (Σ̂)∇f1(Σ̂)
, where Σ̂ = 1

n
n∑

i=1
XiX ⊤

i .

Limitations

✗ Invalid at singular points (∇f1(Σ) = 0).
Wn →d F where 1

4χ2
1 ≺st F ≺st χ2

1 (D. & Xiao, 2016)

✗ Only allows for low number of constraints (p ≤ d).

✗ Difficult to handle inequality constraints.

Testing single tetrad,
Σ close to a singular point.

N. Sturma | Testing Constraints 7 / 18



Wald Test
Tetrad: f1(Σ) = σ13σ24 − σ23σ14.

Wn = f1(Σ̂)2

v̂ar[f1(Σ̂)]
= n f1(Σ̂)2

(∇f1(Σ̂))⊤V (Σ̂)∇f1(Σ̂)
, where Σ̂ = 1

n
n∑

i=1
XiX ⊤

i .

Limitations

✗ Invalid at singular points (∇f1(Σ) = 0).
Wn →d F where 1

4χ2
1 ≺st F ≺st χ2

1 (D. & Xiao, 2016)

✗ Only allows for low number of constraints (p ≤ d).

✗ Difficult to handle inequality constraints.

n=1000

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

Testing single tetrad,
Σ close to a singular point.

N. Sturma | Testing Constraints 7 / 18



Connection to U-statistics
Tetrad: f1(Σ) = σ13σ24 − σ23σ14.

Observation:

f̂1 = n
n−1f1(Σ̂n) = 1

(n
2)

∑
i<j h1(Xi , Xj) is a U-statistic with kernel

h1(Xi , Xj) = 1
2{(Xi1Xi3Xj2Xj4 − Xi2Xi3Xj1Xj4) + (Xj1Xj3Xi2Xi4 − Xj2Xj3Xi1Xi4)}.

Asymptotics (one dimensional):

Gaussian approximation:
√

n(f̂1 − f1(Σ)) −→ N(0, m2σ2
g1

)

where m is the degree of the kernel h1 and σ2
g1

is the variance of the Hájek projection

g1(Xi) = E[h1(Xi , Xj)|Xi ] = 1
2 {(Xi1Xi3σ24 − Xi2Xi3σ14) + (σ13Xi2Xi4 − σ23Xi1Xi4)} .

Irregular points: σ2
g1

= 0 =⇒ U-statistic is degenerate =⇒ Gaussian approximations fails.
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Estimable Constraints and U-statistics
Assumption: f (θ) = (f1(θ), . . . , fp(θ))⊤ is estimable.

That is, for some integer m there exists a measurable, symmetric function h : Rm → Rp such that

E[h(X1, . . . , Xm)] = f (θ) for all θ ∈ Θ,

whenever X1, . . . , Xm are i.i.d. with distribution Pθ.

U-statistics: Un = 1
(n

m)
∑

(i1,...,im)∈In,m

h(Xi1, . . . , Xim) , where In,m = {(i1, . . . , im) : 1 ≤ i1 < . . . < im ≤ n}.

−→ Reject for “large” values of max1≤j≤p(
√

n σ̂−1
j )Un,j .

Asymptotics: √
n (Un − f (θ)) −→ Np(0, Γg), where Γg = Cov[g(X1)] and g Hájek projection.

U-statistic is degenerate at irregular points =⇒ Gaussian approximation fails.
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Independent Sums
Observation: h(X(i−1)m+1, . . . , Xim) are independent.

Hn = m
n

m∑
i=1

h(X(i−1)m+1, . . . , Xim).

Test statistic:
max
1≤j≤p

(
√

n σ̂−1
j )Hn,j .

Asymptotics:
√

n/m (Hn − f (θ)) −→ N(0, Γh), where Γh = Cov[h(X1, . . . , Xm)].

✔ High-dimensional approximation of test statistic (p ≫ n). (Chernozhukov et al., 2013)

✔ Non-degenerate limit at every parameter.

✗ inefficient . . . sum is only over n
m elements.

Independent sums guard against degeneracy, but can we do better/use more kernel evaluations?

N. Sturma | Testing Constraints 10 / 18



Independent Sums
Observation: h(X(i−1)m+1, . . . , Xim) are independent.

Hn = m
n

m∑
i=1

h(X(i−1)m+1, . . . , Xim).

Test statistic:
max
1≤j≤p

(
√

n σ̂−1
j )Hn,j .

Asymptotics:
√

n/m (Hn − f (θ)) −→ N(0, Γh), where Γh = Cov[h(X1, . . . , Xm)].

✔ High-dimensional approximation of test statistic (p ≫ n). (Chernozhukov et al., 2013)

✔ Non-degenerate limit at every parameter.

✗ inefficient . . . sum is only over n
m elements.

Independent sums guard against degeneracy, but can we do better/use more kernel evaluations?

N. Sturma | Testing Constraints 10 / 18



Proposal: Randomized Incomplete U-statistics

U ′
n,N = 1

N̂
∑

ι=(i1,...,im)∈In,m

Zιh(Xi1, . . . , Xim)

• In,m = {(i1, . . . , im) : 1 ≤ i1 < . . . < im ≤ n}.

• Computational budget parameter N ≤
( n

m
)
.

• {Zι : ι ∈ In,m} are i.i.d. Ber(pn) with pn = N/
( n

m
)
.

• N̂ = ∑
ι∈In,m Zι is the number of successes.

Asymptotics: √
n(U ′

n,N − f (θ)) ≈ N(0, m2Γg + n
N Γh).

Choose N = O(n) to guard against degeneracy!
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Proposed Test
Test statistic

T = max
1≤j≤p

(
√

n σ̂−1
j )U ′

n,N,j .

Critical value
1. Approximate distribution of T by maximum of Gaussian random vector Y ∼ Np(0, Γ), where

Γ = m2Γg + n
N Γh.

2. Construct an estimate Γ̂ of the true asymptotic covariance matrix Γ in a Gaussian multiplier bootstrap
method. Then W ∼ Np(0, Γ̂) is “close” to Y ∼ Np(0, Γ).

3. Critical value: Quantile cW0(1 − α) of W0 = max1≤j≤p σ̂−1
j Wj .

Our analysis. . .

If N = O(n) then the proposed test based on an incomplete U-statistic is asymptotically valid (controls
type I error) in high dimensions p ≫ n and under mixed degeneracy:

P(T > cW0(1 − α)) ≤ α.
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Mixed Degeneracy
Background on high-dimensional Gaussian approximation

Chernozhukov, Chetverikov, Kato (2013). Gaussian approximations and multiplier bootstrap for maxima of sums of
high-dimensional random vectors. Ann. Statist., 41(6):2786–2819.

Chen (2018). Gaussian and bootstrap approximations for high-dimensional U-statistics and their applications.
Ann. Statist., 46(2):642–678.

Assumption: Non-degenerate: There exists c > 0 such that σ2
gj ≥ c for all j = 1, . . . , p.

Chen, Kato (2019). Randomized incomplete U-statistics in high dimensions. Ann. Statist., 47(6):3127–3156.
Assumption: Either non-degenerate: There exists c > 0 such that σ2

gj ≥ c for all j = 1, . . . , p.

Or degenerate: σ2
gj = 0 for all j = 1, . . . , p.

Mixed degeneracy assumption
Let p1, p2 ∈ N such that p1 + p2 = p and assume:
(A) There exists c > 0 such that σ2

gj
≥ c for all j = 1, . . . , p1.

(B) There exists k > 0 and β > 0 such that ∥gj(X1) − fj(θ)∥ψβ
≤ Cn−k for all j = p1 + 1, . . . , p.

=⇒ σ2
gj

≤ C̃n−2k
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High-dimensional Gaussian Approximation
Theorem
Under mixed degeneracy (and additional moment conditions on h), we have the Gaussian approximation
on the hyperrectangles

sup
R∈Rp

re

|P(
√

n(U ′
n,N − f (θ)) ∈ R) − P(Y ∈ R)| ≤ C{ωn,1 + ωn,2 + ωn,3},

where Y ∼ Np(0, m2Γg + n
N Γh) and

ωn,1 =
m2/β log(pn)1+6/β

n ∧ N

1/6

, ωn,2 = N1/2m2 log(pn)1/2+2/β

nmin{1/2+k, 5/6} , ωn,3 =
Nm2 log(p)2

nmin{1+k,m}

1/3

.

Note:
If N = O(n) and k ≥ 1/3 is fixed, then the bound vanishes asymptotically if log(pn)3/2+6/β = O(n).
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High-dimensional Bootstrap Approximation
Recall: Y = m Yg +

√
n/N Yh, where Yg ∼ Np(0, Γg) and Yh ∼ Np(0, Γh) are independent.

Approach: Construct Wg , Wh such that, given the data, both are independent and approximate Yg , Yh.

Gaussian Multiplier Bootstrap:

Wh = 1√
N̂

∑
ι=(i1,...,im)∈In,m

ξι Zι (h(Xi1, . . . , Xim) − U ′
n,N),

where {ξι : ι ∈ In,m} are a collection of independent N(0, 1) r.v.’s.

=⇒ Given the data, we have Wh ≈ Yh.

1. Similarly, we construct Wg , such that, given the data, Wg ≈ Yg .
2. Finite sample Berry Esseen type bound for the approximation Y ≈ W = m Wg +

√
n/N Wh.

3. Control studentization.
4. Establish asymptotic validity (control of type I error).
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Our Test at Irregular Points
n=1000
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Simulated p-values for testing tetrads with k = 15 observed variables close to a singular point.
Computational budget parameter N = 2n.
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Size vs. Power
n = 500
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Empirical sizes vs. nominal levels for testing tetrads with k = 15
observed variables. True parameter is close to a singular point.

Empirical power for different local alternatives for testing tetrads
with k = 15 observed variables (α = 0.05). True parameter is a

regular point.

Trade-off between efficiency and guarding against singularities.

N. Sturma | Testing Constraints 17 / 18



Size vs. Power
n = 500

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Nominal level

E
m

pi
ric

al
 te

st
 s

iz
e

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●
●

●
●

●●●
●●●●

●●●●●●●●●●●●●●
●

●●●
●

●
●●

●
●●

●
●●●●

●
●

●
●

●
●●●

●
●

●
●

●
●

●

●
●

●

N=250
N=500
N=1000
N=5000
LR

Empirical sizes vs. nominal levels for testing tetrads with k = 15
observed variables. True parameter is close to a singular point.

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

h

E
m

pi
ric

al
 p

ow
er

● ●
●

●

●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ●

●

N=250
N=500
N=1000
N=5000
LR

Empirical power for different local alternatives for testing tetrads
with k = 15 observed variables (α = 0.05). True parameter is a

regular point.

Trade-off between efficiency and guarding against singularities.

N. Sturma | Testing Constraints 17 / 18



Conclusion
✔ General strategy for simultaneous testing of many constraints (p ≫ n).

✔ Equality and inequality constraints.

✔ Optimization free.
Although computationally demanding for large p and large computational budget N.

✔ Accommodate irregular settings where the incomplete U-statistics is mixed degenerate via N = O(n).
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