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1. Motivation
Assumption: Known causal structure between
observed and latent variables.
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Latent-factor graph with 5 observed nodes
and one latent node h.

Aim: Identify the direct causal effects between
the observed variables based on the observed
covariance matrix.
(identify = uniquely recover)

Main contributions:

• Sufficient condition for rational identifiability in
a linear setting.

• Applicable in settings where latent variables
may also have dense effects on many or even
all of the observables.

• Recursive polynomial time algorithm.
(when bounding a matrix rank in a search step)

2. Setup
Linear structural equation model with ob-
served variables X = (Xv)v∈V and latent vari-
ables L = (Lh)h∈L:

X = Λ⊤X + Γ⊤L + ε

• Sparsity: Parameter matrices Λ and Γ are
supported over the edge set D of a directed
graph G = (V ∪̇L, D).

• Latent-factor assumption: All nodes in L are
source nodes of G.

• Independence of the latent factors and the
error terms: Var[ε] =: Ωdiag is diagonal and
Var[L] = I.

Latent covariance matrix:

Ω ≡ Var[Γ⊤L + ε]
= Var[ε] + Γ⊤Var[L]Γ = Ωdiag + Γ⊤Γ.

Observed covariance matrix:

Σ ≡ Var[X ] = (I − Λ)−⊤Ω(I − Λ)−1.

3. Rational Identifiability
Given: Latent-factor graph G = (V ∪̇L, D).

Every latent-factor graphG yields a parametriza-
tion of the observed covariance matrix:

φG : (Λ,Γ,Ωdiag) 7−→ Σ ≡ Var[X ].

Definition. The model given by G is rationally
identifiable if there is a rational map ψG such that

ψG ◦ φG(Λ,Γ,Ωdiag) = Λ

for ‘almost all’ (Λ,Γ,Ωdiag).

Remark. Always solvable via Gröbner basis computations.
• Double-exponential complexity.
• Only feasible on small graphs.

4. Key Idea
Use algebraic relations in latent covariance
matrix.
Observe that

Σ = (I − Λ)−⊤Ω(I − Λ)−1

⇐⇒ Ω = (I − Λ)TΣ(I − Λ).

Algebraic relations among entries of Ω = Ωdiag +
Γ⊤Γ yield relations among entries of Λ and Σ:

f (Ω) = 0 ⇐⇒ f ((I − Λ)TΣ(I − Λ)) = 0.

Observation:
The latent covariance matrix may be sparse
and feature low-rank structure:

Ω = Ωdiag + Γ⊤Γ = Ωdiag +
∑
h∈L

γhγ
⊤
h

= diag + sum of sparse rank 1 matrices.

−→ We exploit algebraic relations that are van-
ishing off-diagonal sub-determinants of Ω.

Example:

rank(Ω{1,2},{3,4}) = 1
=⇒ det(Ω{1,2},{3,4}) = 0.
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We have the following relations among Λ and Σ:

det(
[
(I − Λ)TΣ(I − Λ)

]
{1,2},{3,4})

= λ23σ12σ24 − λ23σ14σ22 − σ13σ24 + σ14σ23 = 0,

which we can then solve for λ23.

5. LF Half-Trek Criterion
Definition. A half-trek from node v to node w is
a path of the form

v x1 xn w or v
h

x1 xn w .

A system of half-treks has no sided intersection
if neither the left nor the right sides intersect.

Definition. Let v ∈ V and Y, Z ⊆ V \ {v}
and H ⊆ L. The triple (Y, Z,H) satisfies the
latent-factor half-trek criterion (LF-HTC) for v if

1. |Y | = |pa(v)| + |Z| and |Z| = |H|,

2. Y ∩ (Z ∪ {v}) = ∅,

3. [pa(Y ) ∩ pa(Z ∪ {v}) ∩ L] ⊆ H,

4. There is system of half-treks from Y to pa(v)∪
Z without sided intersection and all half-treks
ending in Z have form y←h→ z for h ∈ H.

Theorem. If the triple (Y, Z,H) satisfies the LF-
HTC for v ∈ V , then column Λ∗,v is a rational
function of the observed covariance matrix Σ,
the columns (Λ∗,z)z∈Z and the columns Λ∗,y for
those y ∈ Y that can be reached from Z ∪ {v}
using a half-trek that avoids H.

Algorithm. Recursively cycle through nodes v
and search for LF-HTC triples that allow solving
for Λ∗,v. Network-flow setup finds LF-HTC triples
in polynomial time under a bound on |Z| = |H|.

Software
SEMID

An R-package for parameter identifiability in
linear structural equation models.

−→ available on CRAN and GitHub

Example I
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λ12 λ23 λ45

v ∈ {1, 4} : Trivially, Λ∗,1 = Λ∗,4 = 0.

v = 3: Take Y = {1, 2}, Z = {4}, H = {h}.
(ii) Y ∩ (Z ∪ {3}) = {1, 2} ∩ {3, 4} = ∅, (iv) 1←h→ 4, 2 ≡ 2

v = 2 and v = 5: Can find (Y, Z,H) similarly.

=⇒ The model is LF-HTC-identifiable, that is,
the parameters λ12, λ23, and λ45 are recovered
by rational functions in the entries of Σ.

Example II

(a) Rationally identifiable. (b) Generically finite-
to-one but not rationally
identifiable.

(c) Generically infinite-to-
one.


