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Linear Structural Equation/ Causal Models TLTI

Each model is induced by a directed graph:

[Ll : Confounder]

[Xl . Tax Rate]—»[Xg : Mom'’s Smoking]—»[Xg : Baby’s Weight]

Linear structural equations:

X1 = €1,

Xo = Ao X1 + ol + e, Independent errors:
X3 = A3 Xo + 3l + €3, g1l ex ez g
L, = £y. Var[e,]| = w, < ¢

Topic of the talk:  If Ly is latent, can we recover the direct effects (A1, Ao3) from X = Var[X]?
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Example: Instrumental Variable Model TLUTI
r

) s X1 0 )\12 0 X1 0 &1
A2 o3 Xol =10 0 Ax Xo|+ || Li+ |2
X))} ;) oo o) (xs) |\ e
Observed covariance matrix:
011 012 013 w1 W1A12 w1A12 [A23
P— - 0 03| =| - wy+ ’}/g + wl)\%z Vo3 + A23092
© 033 : : w3 + 73 + 27273003 + M350
We see that
o
Ay = 12 with o117 > 0,
011
0-13 - ] 1
Ap3 = with 01 = wiA1p # 0 ‘almost surely’.
012
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Setup
Variables:
Observed: X = (X, )vev Latent: L= (Lp)per

Graph:
Directed graph G = (VUL, D) with directed cycles allowed.

Latent-factor assumption:

All latent variables are latent factors = all nodes in £ are source nodes of G.

Structural equation model:

X=NX+T"L+e
— all latent factors and error terms in (L, €) are mutually independent, so
Qqiag = Var[e] = diag(w, : v € V) diagonal, and Var[L] = | without loss of generality.

— parameter matrices A and [ are sparse and supported over edge set D.
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|dentifiability TUM

e Every latent-factor graph G yields a parametrization of the observed covariance matrix:

b6 (NT, Qiiag) > (I = A) T (Qaiag + T T)(I = A)L.
=Y =Var[X]

e The model given by G is rationally identifiable if

J rational map 9 : Yo ¢c(N, T, Qgiag) =N for ‘almost all’ (A, T, Qqiag).
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|dentifiability
e Every latent-factor graph G yields a parametrization of the observed covariance matrix:

b6 (NT, Qiiag) > (I = A) T (Qaiag + T T)(I = A)L.
=Y =Var[X]

e The model given by G is rationally identifiable if

J rational map 9 : Yo ¢c(N, T, Qgiag) =N for ‘almost all’ (A, T, Qqiag).

e The problem may be solved via a Grobner basis computation. .. on small scale.

e Main Contribution:

— Sufficient graphical condition for rational identifiability.

— Recursive polynomial time algorithm.

(caveat: polynomial time when bounding a matrix rank in a search step)

— Condition is not necessary but ‘effective’; see simulations in paper.
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Using Algebraic Relations in Latent Covariance Matrix TLUTI

e Latent covariance matrix

Q = Var[['L+¢] = Var[e] + T Var[L]lT = Qqiag +T'T.

e Observe that

S=(U-N"TQU-NT = | Q= ({-N"Z(-N) ]
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Using Algebraic Relations in Latent Covariance Matrix TLUTI

e Latent covariance matrix

Q = Var[['L+¢] = Var[e] + T Var[L]lT = Qqiag +T'T.

e Observe that

S=(U-N"TQU-NT = | Q= ({-N"Z(-N) ]

e Algebraic relations between entries of {2 = Qg + [T yield relations between entries of A and X:
f(Q) = 0 < f((I-N"Z(I-A))=0.

A w00 (=M= - 1),

Vho Vh3 Q=10 wr+7n YrVh — — A =
A12 A23 — 0B 23012 = 0
O—@——0G 0 Yoy ws+ 7k
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Latent Low Rank Structure TUT

e Lots of existing work is based on using zero entries in latent covariance matrix.

e However, the resulting methods cannot cover situations such as

Oo—00—0B B0
where the latent covariance matrix is dense:

Q = Qgiag + Yy, = diagonal + dense rank 1.

e New paper: Generalize beyond zeros by exploiting

[ latent low rank structure. ]
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Example: Latent Low Rank Structure TLUTI

w1 Yh1Yh2 Yh17Yh3 Yh1Yh4 Yh17Yh5
Y1V W2+ 7/2,2 Yh2YR3  YR2VYha  Yh2Vhs
Q= Vv YV Wit Ves  YmYha Vh3Vhs
YiiYha  Y2Yhe  YR3Yhe  Wa+Vha  VhaVhs
VMYhs  YhVhs YWYk YhaYhs  Ws + Vs

Rank-deficient off-diagonal submatrix:

Yh1Yh3  Yh17Yh4 Yh1
0 _ = : —  det(Q = 0.
{1.2}.{34} (%2%3 %2%4) (%z) (%3 %4) e( {1'2}’{3'4})

Relations between A and X:

det([(/ = N)"E(/ - /\)]{1'2},{3’4}) = \23012024 — A\23014022 — 013024 + 014023 = 0.
We see that

013024 — 014023

A3 = with 010004 — 01402 # 0 ‘almost surely’.

012024 — 014022
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New Latent-Factor Half-Trek Criterion: Main ldea TUT

e Digraph (VUL, D) with observed variables in V' and latent variables in L.

e Recursive search for linear equation systems that determine columns Ay,(,) ., v € V.
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New Latent-Factor Half-Trek Criterion: Main ldea TUT

e Digraph (VUL, D) with observed variables in V' and latent variables in L.
e Recursive search for linear equation systems that determine columns Ay,(,) ., v € V.

e To this end, we find a rank-deficient off-diagonal submatrix

Q2o = (1= N0 =Ny, with Y] = 12|+ [pa(v)].

e Our combinatorial conditions ensure a generically unigue solution. In particular, we can write
Y = YzUY,4() such that det(Qy, z # 0) but

det(Qqu{w},ZU{v}) =0 forallwe Ypa(v).
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New Latent-Factor Half-Trek Criterion: Main ldea TUT

e Digraph (VUL, D) with observed variables in V' and latent variables in L.
e Recursive search for linear equation systems that determine columns Ay,(,) ., v € V.

e To this end, we find a rank-deficient off-diagonal submatrix

Q2o = (1= N0 =Ny, with Y] = 12|+ [pa(v)].

e Our combinatorial conditions ensure a generically unigue solution. In particular, we can write
Y = YzUY,4() such that det(Qy, z # 0) but

det(Qqu{w},ZU{v}) =0 forallwe Ypa(v).

e A half-trek from node v to node w is a path of the form:
VXL — oo —Xp— W Of Vi l—Xx1— ... X — W.
Relevance: Entries of (/ — A)TX are sums over half-treks.
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Latent-Factor Half-Trek Criterion (LF-HTC) TUT
Definition
Llet ve Vand Y, Z C V\{v}and HC L. Triple (Y, Z, H) satisfies latent-factor half-trek criterion for v if
(i) [Y] = Ipa(v)| + [H] and | Z] = [H];

(i) YN (ZU{v})=0and [pas(Y)Npas(ZU{v})] C H;

(iii) There is a system of half-treks from Y to pa(v) U Z without sided intersection and all half-treks ending
in Z have form y <« {— z for { € H.

Theorem

“If the triple (Y, Z, H) satisfies the LF-HTC for v € V then column A, , is a rational function of ¥ and
certain other columns of N\.”
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Our Software: SEMID (R Package) TLTI

Algorithm: Recursive Solving.
e Cycle through nodes v and search for LF-HTC triples (Y,Z,H) that allow solving for A, ,.

o Network-flow setup finds LF-HTC triples in polynomial time under a bound on |Z| = |H|.

>

> L = matrix(c(O0, 1, 0, O, O, O,

+ 0o, 0, 1, 0o, 0, O,

+ o, 0, 0, 0, 0, O,

+ o, o0, 0, 0, 1, O,

+ o, 0, 0, 0, 0, O,

+ 1, 1, 1, 1, 1, 0), 6, 6, byrow=TRUE)
> observedNodes = seq(1,5)

> latentNodes = c(6)

> g = LatentDigraph(L, observedNodes, latentNodes)
>

>

> 1fhtcID(g)

[1] nr. of edges between observed nodes shown rat. identifiable:
[2] rat. identifiable edges: 1->2, 2->3, 4->5
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Conclusion TI.ITI

e Many applications require modeling effects of latent variables.
e Latent variable models may feature complicated parametrizations and geometry.
e Lots to explore still, in identification and for other problems. . .

Preprint:

[§ Barber, Drton, Sturma, Weihs (2022).
Half-Trek Criterion for Identifiability of Latent Variable Models. arXiv:2201.04457.
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