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Motivation: One-Factor Analysis Model TLUTI
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Model:

The family of multivariate normal distributions N (0, X) whose covariance matrix lies in the set

{Q+TT": Q>0 diagonal, I € R*'}.

Topic of the talk:  Testing the goodness-of-fit based on samples Xi, ..., Xy ~ N (0, X).
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Algebraic Characterization TLUTI

(h) wi+Y My M M M
MY w2t B N s
O @ G @ G S= mm s wsts , s
Y17V4 Y2Y4 V3V4  Wa T+ Yz Va5
Y175 Y275 Y375 VaYs  Ws + 752

Observation:

Off-diagonal 2 x 2 minors (=tetrads) vanish:

det(X (12} (3.4)) = 013024 — 023014 = 71737274 — 12737174 = 0

If > is in the one-factor analysis model, then all tetrads vanish simultaneously.
That is,
Ojj0kl — Oik0j| = 0

for four distinct indices 1/, J, k, /.
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General Setup: Testing Constraints on Statistical Models TLUTI
Parametric family:
P ={Py:0 € O}, where © € RY.

Model:

©={0€0: fi() <0, 1<j<p} Main interest: Polynomial constraints f;.

Based on samples X, ..., X, ~ Py test
H0:9€@0VS. Hl:QE@\@O.

Challenges:

Many constraints, irregular points, inequalities, ...
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Likelihood-Ratio Test

Ap = —2log (

Limitations

X Likelihood function is not available or is difficult
to maximize under ©.

X Slow convergence if dimension of © is very large.

(In particular, larger than the sample size n.)

X Asymptotic distribution depends on the true
parameter.

(Polynomials: Irregular points of ©g are algebraic singularities.)
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Likelihood-Ratio Test TUT

A, = —2log (Supeeeo ﬁn(e)) _

supgee L£n(0)
Limitations Invalidity at singularities
n=1000
X Likelihood function is not available or is difficult 0 -0
to maximize under ©.
8 |
X Slow convergence if dimension of © is very large. 6
(In particular, larger than the sample size n.) 4
X Asymptotic distribution depends on the true 2 7 %W
parameter. 0 | ‘ ‘ ‘ ‘
(Polynomials: Irregular points of ©g are algebraic singularities.) 00 02 04 06 08 10

Simulated p-values for testing the one-factor analysis model with
k = 15 observed variables close to a singular point.
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“Plug-in" Test TLUTI

where 8, is a “good” estimator of 6.

Tetrads: Gaussian approximation to derive critical values.

High-dimensional approximation (p > n).
Inequality constraints.
Optimization free.

X Asymptotic distribution depends on the true
parameter.
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Simulated p-values for testing tetrads with kK = 15 observed

variables close to a singular point.
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Connection to U-statistics TI.ITI

Tetrad: fl(Z) = 013024 — 023014.
Observation:

fL = nf”lfl(fn) = é) Yicj h(Xi, X;) is a U-statistic with kernel

1
hi (X, X;) = 5{(Xi1Xi3)<jZ)<j4 — XioXi3Xi1Xja) + (X1 Xi3Xio Xia — Xjo X3 Xi1Xia) }.
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Connection to U-statistics 'I'I.I'I'I

Tetrad: fl(Z) = 013024 — 023014.

Observation:

fi = nf”lfl(fn) = = Yiei hi(X;, X;) is a U-statistic with kernel

(2)
1
hi (X, X;) = 5{(Xi1Xi3)<jZ)<j4 — XioXi3Xi1Xja) + (X1 Xi3Xio Xia — Xjo X3 Xi1Xia) }.
Asymptotics (one dimensional):

Gaussian approximation: +/n(fi — fi(X)) — N(0, m*s2)

where m is the degree of the kernel h; and o2 is the variance of the Hajek projection

2
81

1
gi1(Xi) = E[h (X, X;)|Xi] = 5 {(Xi1Xiz004 — XioXizo14) + (013X Xia — 003 Xi1.Xia) } -

2

o — 0 = U-statistic is degenerate = Gaussian approximations fails.

Irregular points: o
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Proposal: Incomplete U-statistics TUM

Assumption: f(9) = (f(0),..., f,(0))" is estimable, i.e., there exists a symmetric kernel h(xi, ..., Xm) s.t.

1
N = > Zh( X, ..., X; )
N L:(Il ..... im)eln'm
 fom = {1 im) 1< it <. < i < ). ® {Z :1€ I} areiid. Ber(p,) with p, = N/(7).
e Computational budget parameter N < (,'7’7) o N = Siel,n Z, is the number of successes.
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Proposal: Incomplete U-statistics TUM

Assumption: f(9) = (f(0),..., f,(0))" is estimable, i.e., there exists a symmetric kernel h(xi, ..., Xm) s.t.

1
N = > Zh( X, ..., Xi.)
N L:(Il ..... im)eln'm
 fom = {1 im) 1< it <. < i < ). ® {Z :1€ I} areiid. Ber(p,) with p, = N/(7).
e Computational budget parameter N < (,'7’7) o N = Siel,n Z, is the number of successes.
Asymptotics: U vi— (X)) — N(0, m*02 + 252 ). Cliwess i = O1@) o giee
ymp V(Unpa — A(2)) (0. morg, + 3h,) against degeneracy!
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Proposed Test TUM

Test statistic

Critical value

1. Approximate test statistic by maximum of Gaussian random vector Y ~ N,(0,T), where
[=m%T,+ il h

2. Construct an estimate ofAthe true asymptotic covariance matrix I by a Gaussian multiplier bootstrap
method. Then W ~ N,(0,T) is “close” to Y ~ N,(0,T).

3. Critical value: Quantile cyy,(1 — a) of W = maxy<j<,5; ' W,.

Our theoretical contribution

If N = O(n) then the proposed test based on an incomplete U-statistic is asymptotically valid (controls
type | error) in high dimensions p > n and under mixed degeneracy:

P(T > cw,(1 — o)) < a.

N. Sturma | Testing Constraints 8 /13



Mixed Degeneracy TLUTI

Background on high-dimensional Gaussian approximation

Chernozhukov, Chetverikov, Kato (2013). Gaussian approximations and multiplier bootstrap for maxima of sums of
high-dimensional random vectors. Ann. Statist., 41(6):2786-2819.
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Mixed Degeneracy TLUTI

Background on high-dimensional Gaussian approximation

Chernozhukov, Chetverikov, Kato (2013). Gaussian approximations and multiplier bootstrap for maxima of sums of

high-dimensional random vectors. Ann. Statist., 41(6):2786—2819.

Chen (2018). Gaussian and bootstrap approximations for high-dimensional U-statistics and their applications.
Ann. Statist., 46(2):642-678.

Assumption: Non-degenerate: There exists ¢ > 0 such that ‘72—,- >cforallj=1,...,p.

Chen, Kato (2019). Randomized incomplete U-statistics in high dimensions. Ann. Statist., 47(6):3127-3156.

Assumption: Either non-degenerate: There exists ¢ > 0 such that Jéz,j >cforallj=1,...,p.
Or degenerate: cré, =0forallj=1,..., p.
Mixed degeneracy assumption
Let p1, p» € N such that p; + p» = p and assume:
(A) There exists ¢ > 0 such that ag,j >cforallj=1,..., p.

(B) There exists k > 0 and 8 > 0 such that ||g;(X1) — £;(0)|ly, < Cn % forall j=p; +1,...,p.

& (T; < Cn—2k
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High-dimensional Bootstrap Approximation TLUTI

Theorem

Under mixed degeneracy (and additional moment conditions on h), we have the Gaussian approximation

sup [P(v/n(Upy — f(0)) € R) = P(Y € R)| < C{w, i+ wio + wish,

ReRP,

where Y ~ N,(0, m*ly + #iT1) and

[ m?Plog(pn)t+5/8 1/6  NY2m? log(pn)Y/2+2/0 [ Nm? log(p)? 1/3
o nAN ' ~ pmin{1/2+k,5/6, m/3} o nltk :
Note: If N = O(n) and m > 3, k > 1/3 are fixed constants, then the bound vanishes asymptotically if log(pn)3/2+/8 = o(n).
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High-dimensional Bootstrap Approximation TLUTI

Theorem

Under mixed degeneracy (and additional moment conditions on h), we have the Gaussian approximation

sup [P(v/n(Upy — f(0)) € R) = P(Y € R)| < C{w, i+ wio + wish,

ReRP,

where Y ~ N,(0, m*ly + #iT1) and

B m?/? log(pn)'+6/5 1/6 B NY2m? log(pn)L/2+2/8 B Nm? log(p)? 1/3
B nAN ' T min{1/2+k 5/6,m/3} = itk :

Note: If N = O(n) and m > 3, k > 1/3 are fixed constants, then the bound vanishes asymptotically if log(pn)3/2+t%/% = o(n).

This is the basis for the bootstrap approximation:
1. Further approximate Y by a Gaussian multiplier bootstrap W — Similar bound under N = O(n).
2. Control studentization.

3. Establish asymptotic validity (control of type I error).
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Our Test at Irregular Points

Simulated p-values for testing tetrads with k = 15 observed variables close to a singular point.
Computational budget parameter N = 2n.
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Size vs. Power
n = 500

Empirical test size

I
0.0 0.2 0.4 0.6 0.8 1.0

Nominal level

Empirical sizes vs. nominal levels for testing tetrads with kK = 15
observed variables. True parameter is close to a singular point.
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Empirical sizes vs. nominal levels for testing tetrads with kK = 15
observed variables. True parameter is close to a singular point.
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Empirical power for different local alternatives for testing tetrads
with k = 15 observed variables (o« = 0.05). True parameter is a
regular point.

Trade-off between efficiency and guarding against singularities.
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Conclusion 'I'I.I'I'I

v/ General strategy for simultaneous testing of many constraints (p > n).
v Equality and inequality constraints.

v/ Optimization free.

Although computationally demanding for large p and large computational budget N.

v/ Accommodate irregular settings where the incomplete U-statistics is mixed degenerate by choosing

N = O(n).

Our paper and background reading;:

[{ Sturma, Drton, Leung (2022).
Testing Many and Possibly Singular Polynomial Constraints. arXiv:2208.11756.

[@ Leung, Drton (2018).
Algebraic tests of general Gaussian latent tree models. NeurlPS 2018.

3 Drton (2009).
Likelihood ratio tests and singularities. Ann. Statist., 37(2):979-1012

European Research Council

Established by the European Commission
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Appendix: Kernels for Polynomial Hypotheses TLUTI

Polynomial of total degree s:

fi(0) = ag + Zl _Z. ag,,..int - 0;
= ),
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Appendix: Kernels for Polynomial Hypotheses TLUTI

Polynomial of total degree s:

S

Construct kernel h;:

1) For a fixed integer n > 1, find unbiased estimators é,-(Xln) of ; foralli=1,..., d.

2) For the degree m = ns, define the unbiased estimator

S

v

Polynomials are estimable.
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