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Motivation: One-Factor Analysis Model
h

1 2 3 4 5

Model:

The family of multivariate normal distributions Nk(0, Σ) whose covariance matrix lies in the set{
Ω + ΓΓ⊤ : Ω > 0 diagonal, Γ ∈ Rk×1}

.

Topic of the talk: Testing the goodness-of-fit based on samples X1, . . . , Xn ∼ Nk(0, Σ).
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Algebraic Characterization
h

1 2 3 4 5 Σ =



ω1 + γ2
1 γ1γ2 γ1γ3 γ1γ4 γ1γ5

γ1γ2 ω2 + γ2
2 γ2γ3 γ2γ4 γ2γ5

γ1γ3 γ2γ3 ω3 + γ2
3 γ3γ4 γ3γ5

γ1γ4 γ2γ4 γ3γ4 ω4 + γ2
4 γ4γ5

γ1γ5 γ2γ5 γ3γ5 γ4γ5 ω5 + γ2
5


Observation:
Off-diagonal 2 × 2 minors (=tetrads) vanish:

det(Σ{12},{3,4}) = σ13σ24 − σ23σ14 = γ1γ3γ2γ4 − γ2γ3γ1γ4 = 0

If Σ is in the one-factor analysis model, then all tetrads vanish simultaneously.
That is,

σijσkl − σikσjl = 0
for four distinct indices i , j , k , l .

N. Sturma | Testing Constraints 2 / 13



General Setup: Testing Constraints on Statistical Models

Parametric family:

P = {Pθ : θ ∈ Θ}, where Θ ∈ Rd .

Model:

Θ0 = {θ ∈ Θ : fj(θ) ≤ 0, 1 ≤ j ≤ p}. Main interest: Polynomial constraints fj .

Based on samples X1, . . . , Xn ∼ Pθ test

H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ \ Θ0.

Challenges:

Many constraints, irregular points, inequalities, . . .
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Likelihood-Ratio Test

λn = −2 log
supθ∈Θ0 Ln(θ)

supθ∈Θ Ln(θ)

 .

Limitations

✗ Likelihood function is not available or is difficult
to maximize under Θ0.

✗ Slow convergence if dimension of Θ is very large.
(In particular, larger than the sample size n.)

✗ Asymptotic distribution depends on the true
parameter.
(Polynomials: Irregular points of Θ0 are algebraic singularities.)

Invalidity at singularities

Simulated p-values for testing the one-factor analysis model with
k = 15 observed variables close to a singular point.

N. Sturma | Testing Constraints 4 / 13



Likelihood-Ratio Test

λn = −2 log
supθ∈Θ0 Ln(θ)

supθ∈Θ Ln(θ)

 .

Limitations

✗ Likelihood function is not available or is difficult
to maximize under Θ0.

✗ Slow convergence if dimension of Θ is very large.
(In particular, larger than the sample size n.)

✗ Asymptotic distribution depends on the true
parameter.
(Polynomials: Irregular points of Θ0 are algebraic singularities.)

Invalidity at singularities
n=1000

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

Simulated p-values for testing the one-factor analysis model with
k = 15 observed variables close to a singular point.

N. Sturma | Testing Constraints 4 / 13



“Plug-in” Test

Mn = max
1≤j≤p

√
n fj(θ̂n)(

v̂ar[fj(θ̂n)]
)1/2 , where θ̂n is a “good” estimator of θ.

Tetrads: Gaussian approximation to derive critical values.

✔ High-dimensional approximation (p ≫ n).

✔ Inequality constraints.

✔ Optimization free.

✗ Asymptotic distribution depends on the true
parameter.

Invalidity at singularities

Simulated p-values for testing tetrads with k = 15 observed
variables close to a singular point.
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Connection to U-statistics
Tetrad: f1(Σ) = σ13σ24 − σ23σ14.

Observation:

f̂1 = n
n−1f1(Σ̂n) = 1

(n
2)

∑
i<j h1(Xi , Xj) is a U-statistic with kernel

h1(Xi , Xj) = 1
2{(Xi1Xi3Xj2Xj4 − Xi2Xi3Xj1Xj4) + (Xj1Xj3Xi2Xi4 − Xj2Xj3Xi1Xi4)}.

Asymptotics (one dimensional):

Gaussian approximation:
√

n(f̂1 − f1(Σ)) −→ N(0, m2σ2
g1

)

where m is the degree of the kernel h1 and σ2
g1

is the variance of the Hájek projection

g1(Xi) = E[h1(Xi , Xj)|Xi ] = 1
2 {(Xi1Xi3σ24 − Xi2Xi3σ14) + (σ13Xi2Xi4 − σ23Xi1Xi4)} .

Irregular points: σ2
g1

= 0 =⇒ U-statistic is degenerate =⇒ Gaussian approximations fails.
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Proposal: Incomplete U-statistics
Assumption: f (θ) = (f1(θ), . . . , fp(θ))⊤ is estimable, i.e., there exists a symmetric kernel h(x1, . . . , xm) s.t.

E[h(X1, . . . , Xm)] = f (θ) for all θ ∈ Θ,

whenever X1, . . . , Xm are i.i.d. with distribution Pθ.

Randomized incomplete U-statistics:

U ′
n,N = 1

N̂
∑

ι=(i1,...,im)∈In,m

Zιh(Xi1, . . . , Xim)

• In,m = {(i1, . . . , im) : 1 ≤ i1 < . . . < im ≤ n}.

• Computational budget parameter N ≤
( n

m
)
.

• {Zι : ι ∈ In,m} are i.i.d. Ber(pn) with pn = N/
( n

m
)
.

• N̂ = ∑
ι∈In,m Zι is the number of successes.

Asymptotics: √
n(U ′

n,N,1 − f1(Σ)) −→ N(0, m2σ2
g1

+ n
N σ2

h1
). Choose N = O(n) to guard

against degeneracy!
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Proposed Test
Test statistic

T = max
1≤j≤p

(
√

n σ̂−1
j )U ′

n,N,j .

Critical value
1. Approximate test statistic by maximum of Gaussian random vector Y ∼ Np(0, Γ), where

Γ = m2Γg + n
N Γh.

2. Construct an estimate Γ̂ of the true asymptotic covariance matrix Γ by a Gaussian multiplier bootstrap
method. Then W ∼ Np(0, Γ̂) is “close” to Y ∼ Np(0, Γ).

3. Critical value: Quantile cW0(1 − α) of W0 = max1≤j≤p σ̂−1
j Wj .

Our theoretical contribution

If N = O(n) then the proposed test based on an incomplete U-statistic is asymptotically valid (controls
type I error) in high dimensions p ≫ n and under mixed degeneracy:

P(T > cW0(1 − α)) ≤ α.
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Mixed Degeneracy
Background on high-dimensional Gaussian approximation

Chernozhukov, Chetverikov, Kato (2013). Gaussian approximations and multiplier bootstrap for maxima of sums of
high-dimensional random vectors. Ann. Statist., 41(6):2786–2819.

Chen (2018). Gaussian and bootstrap approximations for high-dimensional U-statistics and their applications.
Ann. Statist., 46(2):642–678.

Assumption: Non-degenerate: There exists c > 0 such that σ2
gj ≥ c for all j = 1, . . . , p.

Chen, Kato (2019). Randomized incomplete U-statistics in high dimensions. Ann. Statist., 47(6):3127–3156.
Assumption: Either non-degenerate: There exists c > 0 such that σ2

gj ≥ c for all j = 1, . . . , p.

Or degenerate: σ2
gj = 0 for all j = 1, . . . , p.

Mixed degeneracy assumption
Let p1, p2 ∈ N such that p1 + p2 = p and assume:
(A) There exists c > 0 such that σ2

gj
≥ c for all j = 1, . . . , p1.

(B) There exists k > 0 and β > 0 such that ∥gj(X1) − fj(θ)∥ψβ
≤ Cn−k for all j = p1 + 1, . . . , p.

=⇒ σ2
gj

≤ C̃n−2k
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High-dimensional Bootstrap Approximation
Theorem
Under mixed degeneracy (and additional moment conditions on h), we have the Gaussian approximation

sup
R∈Rp

re

|P(
√

n(U ′
n,N − f (θ)) ∈ R) − P(Y ∈ R)| ≤ C{ωn,1 + ωn,2 + ωn,3},

where Y ∼ Np(0, m2Γg + n
N Γh) and

ωn,1 =
m2/β log(pn)1+6/β

n ∧ N

1/6

, ωn,2 = N1/2m2 log(pn)1/2+2/β

nmin{1/2+k, 5/6, m/3} , ωn,3 =
Nm2 log(p)2

n1+k

1/3

.

Note: If N = O(n) and m ≥ 3, k ≥ 1/3 are fixed constants, then the bound vanishes asymptotically if log(pn)3/2+6/β = O(n).

This is the basis for the bootstrap approximation:

1. Further approximate Y by a Gaussian multiplier bootstrap W −→ Similar bound under N = O(n).
2. Control studentization.
3. Establish asymptotic validity (control of type I error).
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Our Test at Irregular Points
n=1000
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Simulated p-values for testing tetrads with k = 15 observed variables close to a singular point.
Computational budget parameter N = 2n.
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Size vs. Power
n = 500
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Empirical sizes vs. nominal levels for testing tetrads with k = 15
observed variables. True parameter is close to a singular point.

Empirical power for different local alternatives for testing tetrads
with k = 15 observed variables (α = 0.05). True parameter is a

regular point.

Trade-off between efficiency and guarding against singularities.
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Conclusion
✔ General strategy for simultaneous testing of many constraints (p ≫ n).

✔ Equality and inequality constraints.

✔ Optimization free.
Although computationally demanding for large p and large computational budget N.

✔ Accommodate irregular settings where the incomplete U-statistics is mixed degenerate by choosing
N = O(n).

Our paper and background reading:

Sturma, Drton, Leung (2022).
Testing Many and Possibly Singular Polynomial Constraints. arXiv:2208.11756.

Leung, Drton (2018).
Algebraic tests of general Gaussian latent tree models. NeurIPS 2018.

Drton (2009).
Likelihood ratio tests and singularities. Ann. Statist., 37(2):979-1012
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Appendix: Kernels for Polynomial Hypotheses
Polynomial of total degree s:

fj(θ) = a0 +
s∑

r=1

∑
(i1,...,ir )

il∈{1,...,d}

a(i1,...,ir )θi1 · · · θir

Construct kernel hj :
1) For a fixed integer η ≥ 1, find unbiased estimators θ̂i(X η

1 ) of θi for all i = 1, . . . , d .
2) For the degree m = ηs, define the unbiased estimator

h̆j(X m
1 ) = a0 +

s∑
r=1

∑
(i1,...,ir )

il∈{1,...,d}

a(i1,...,ir )θ̂i1(X
η
1 )θ̂i2(X

2η
η+1) · · · θ̂ir (X

rη
(r−1)η+1).

3) Symmetrizing: Average over all permutations of {1, . . . , m}: hj(X m
1 ) = 1

m!
∑
π∈Sm h̆j(Xπ(1), . . . , Xπ(m)).

Polynomials are estimable.
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